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Abstract

Objectives

Accurate and reliable criteria to rapidly estimate the probability of infection with the novel

coronavirus-2 that causes the severe acute respiratory syndrome (SARS-CoV-2) and asso-

ciated disease (COVID-19) remain an urgent unmet need, especially in emergency care.

The objective was to derive and validate a clinical prediction score for SARS-CoV-2 infection

that uses simple criteria widely available at the point of care.

Methods

Data came from the registry data from the national REgistry of suspected COVID-19 in

EmeRgency care (RECOVER network) comprising 116 hospitals from 25 states in the US.

Clinical variables and 30-day outcomes were abstracted from medical records of 19,850

emergency department (ED) patients tested for SARS-CoV-2. The criterion standard for

diagnosis of SARS-CoV-2 required a positive molecular test from a swabbed sample or pos-

itive antibody testing within 30 days. The prediction score was derived from a 50% random

sample (n = 9,925) using unadjusted analysis of 107 candidate variables as a screening

step, followed by stepwise forward logistic regression on 72 variables.

Results

Multivariable regression yielded a 13-variable score, which was simplified to a 13-point

score: +1 point each for age>50 years, measured temperature>37.5˚C, oxygen satura-

tion<95%, Black race, Hispanic or Latino ethnicity, household contact with known or sus-

pected COVID-19, patient reported history of dry cough, anosmia/dysgeusia, myalgias or

fever; and -1 point each for White race, no direct contact with infected person, or smoking.

In the validation sample (n = 9,975), the probability from logistic regression score produced

an area under the receiver operating characteristic curve of 0.80 (95% CI: 0.79–0.81), and

this level of accuracy was retained across patients enrolled from the early spring to summer

of 2020. In the simplified score, a score of zero produced a sensitivity of 95.6% (94.8–

96.3%), specificity of 20.0% (19.0–21.0%), negative likelihood ratio of 0.22 (0.19–0.26).

Increasing points on the simplified score predicted higher probability of infection (e.g., >75%

probability with +5 or more points).

Conclusion

Criteria that are available at the point of care can accurately predict the probability of SARS-

CoV-2 infection. These criteria could assist with decisions about isolation and testing at high

throughput checkpoints.

Introduction

The ability to rapidly estimate the probability of infection with the novel coronovirus-2 that

causes severe acute respiratory syndrome (SARS-CoV-2) remains a formidable problem. The

protean clinical picture of SARS-CoV-2 infection confounds its prediction. For example, the
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disease syndrome that SARS-Cov-2 produces—recognized as COVID-19—can manifest a

wide range of nasopharyngeal, respiratory, and gastrointestinal symptoms, and a substantial

minority of patients who carry SARS-CoV-2 manifest no symptoms at the time of testing [1,2].

Asymptomatic patients can manifest nasopharyngeal viral loads, and shedding capacity similar

to symptomatic, infected persons [3,4]. Factors limiting our current knowledge include the

lack of systematically collected data from a large, unbiased, geographically diverse samples of

patients, and problems associated with limited availability of molecular diagnostic tests and

assays, long turnaround time and low diagnostic accuracy [3,5–7]. The need for rapid exclu-

sion without molecular testing arises daily in health care clinics, outpatient treatment facilities,

at the point of intake for homeless shelters, judicial centers for incarceration, and extended

care facilities. This need is particularly urgent in the emergency department (ED), which rep-

resents the largest interface between the general public and unscheduled medical care. In 2016,

the>5000 US EDs had approximately 145 million patients [8]. Additionally, because the ED

interconnects with both outpatient and inpatient medical care, the critical question of SARS-

CoV-2 infection status affects decisions to admit or discharge the patient, return to work, need

for home isolation, and the location of hospital admission. These questions become more com-

plicated for patients without access to basic medical care, and those experiencing serious men-

tal illness, substance use disorders, and homelessness.

To address these needs, the authors created the REgistry of suspected COVID-19 in EmeR-

gency care (RECOVER), a national network to capture data from patients tested for SARS-

CoV-2 and evaluated in the ED [9]. This report addresses the primary goal of the initial net-

work-wide registry, which was to create a quantitative pretest probability scoring system (puta-

tively named the COVID-19 Rule Out Criteria score [CORC score])to predict the probability

of a SARS-CoV-2 test, with special attention to identify those at very low probability of infec-

tion. The intent of the score was to function similarly to the Wells pretest probability scoring

criteria and Pulmonary Embolism Rule out Criteria (PERC rule) for acute pulmonary embo-

lism, respectively, except the diagnostic target was SARS-CoV-2 [10,11].

Materials and methods

The RECOVERY network has resulted from the collaboration of 45 emergency medicine clini-

cian-investigators from unique medical centers in 27 US states. Most of the 45 medical centers

participating are the flagships of hospital networks that include community and academic cen-

ters. Information about these sites, and the methods of the initial registry, are available else-

where [9]. The primary objective of the registry was to obtain a large sample of ED patients

with suspected SARS-CoV-2 and who had a molecular test performed in the ED as part of

their usual care. The design, collection, recording and analysis of data for this report were con-

ducted in accordance with the transparency in reporting of a multivariable prediction model

for individual diagnosis and prognosis (TRIPOD) criteria [12]. The RECOVER registry proto-

col was reviewed by the institutional review boards (IRBs) at all sites; 42 IRBs provided an

exemption from human subjects designation, whereas three IRBs provided approval with

waiver of informed consent. All data were anonymized prior to analysis.

Briefly, eligibility for enrollment required that a molecular diagnostic test was ordered and

performed in the ED setting with suspicion of possible SARS-CoV-2 infection, or COVID-19

disease [9]. Patients could only be enrolled once. Otherwise, there were no age or symptom-

based exclusions; however, the guidance was provided to exclude patients where the test was

clearly done for automated, administrative purposes in the absence of any clinical suspicion

for infection. One example for exclusion was patients without suspected infection but who had

swab testing performed in the ED done only to comply with a hospital screening policy for
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admissions or pre-operative testing. All sites were contracted to abstract charts from at least

500 patients.

Data were collected from the electronic medical record, using a combination of electronic

download for routinely collected, coded variables (e.g., age, vital signs and laboratory values),

supplemented by chart review by research personnel, using methods previously described [9].

Each REDcap data form included 204 questions resulting in 360 answers, because many ques-

tions allowed multiple answers. Data were archived in the REDCap1 system, with electronic

programming to ensure completion of mandatory fields and sensible ranges for parametric

data. Training of data abstractors was done via teleconference with the principal investigator

(JAK) and program manager (KLP), supplemented by an extensive guidance document and

field notes present in the REDCap1 system, visible to the person doing enrollment. This analy-

sis was pre-planned as the first manuscript from the RECOVER network.

To generate a comprehensive pool of independent variables for a quantitative pretest proba-

bility model, as well as harmonization with other data, among the 204 questions, we recorded

28 symptoms, including all symptoms from the Clinical Characterization Protocol from the

World Health Organization-supported International Severe Acute Respiratory and Emerging

Infection Consortium (ISARIC) [13]. The REDCap form also recorded 14 contact exposure

risks, ranging from no known exposure, to constant exposure to a household contact with

COVID-19. We anticipated that many patients would have multiple ED visits prior to testing,

especially for atypical presentations, and the goal was to collect patient data from the earliest

medical presentation. Accordingly, the symptoms and contact risks, together with the vital

signs (body temperature, heart rate, respiratory rate, systolic and diastolic blood pressure and

pulse oximetry reading) were recorded from the first ED visit within the previous 14 days (the

“index visit”). The form also documented presence or absence of 18 home medications and 39

questions about past medical history. Outcomes, including results of repeated molecular test-

ing, or antibody testing for SARs-CoV-2 were recorded up to 30 days after the date of the

SARS-CoV-2 test that qualified the patient for enrollment.

The criterion standard for disease positive was evidence of SARs-CoV-2 infection, from

either a positive molecular diagnostic test from a swab sample (usually from the nasopharynx),

or a positive serological IgM or IgG antibody, documented within 30 days of enrollment. The

criterion standard for disease negative required that patients have no positive molecular or

serological test for SARS-CoV-2 or clinical diagnosis of COVID-19 within 30 days.

Model development

After upload, each REDCap form was inspected centrally for completeness and sensibility of

data, resulting in verification queries. For example, if a patient had none of 28 symptoms, the

site investigator was asked to double-check the medical record. Uploaded records were consid-

ered eligible for analysis after resolution of queries coupled with electronic verification by

the data abstractor and site investigator that each uploaded record was a true and complete

reflection of data in the medical record. The a priori plan for model development called for a

classical approach of screening candidate variables with unadjusted analyses, followed by mul-

tivariable logistic regression analysis with conversion into either a scoring system or a set of

criteria. The REDCap data collection form was produced in March 2020, when the phenotype

of patients with SARs-CoV-2 infection was incompletely understood. Thus, the plan was an

agnostic approach: to screen all potential variables for discriminative value, including method

and day of arrival to the ED, patient demographics, symptoms, vital signs, contact risks, habits,

medications and past medical history. As previously described, we estimated a minimum sam-

ple size of 20,000 to allow derivation and validation on approximately 10,000 patients in each
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step, assuming a 30% criterion standard positive rate and a greater than 10:1 ratio of outcomes

to variables, recognizing this as a minimum criterion [9,12,14].

To derive the CORC score, we first extracted a 50% random sample, and, for statistical test-

ing, used the criterion standard result as the dependent variable. Per protocol, categorical data

that were not charted were considered absent, but missing continuous data (>0.1%, age, vital

signs, and body mass index) were analyzed for monotonicity and replaced using multiple

imputations method in SPSS1 (IBM Corp. Released 2020. IBM SPSS Statistics for Windows,

Version 27.0. Armonk, NY: IBM Corp). The mean values from five iterations were used. Bivar-

iate data were compared between test + and test—using the Chi-Square statistic and means

from parametric variables (e.g., age) were compared using unpaired t-test. Variables with

P<0.05 were entered into logistic regression equation, initially leaving parametric data as con-

tinuous (to create the probability from logistic regression), and variables selected for score

development using an empirical stepwise forward approach using the likelihood ratio

approach. “The model was terminated when the change Akaiki information criterion

(AIC = 2k-2ln(L) where k = number of variables and L = maximum likelihood) reached its

nadir. Model fitness was assessed with the Hosmer-Lemeshow test.

To produce the actual CORC score (a simplified version of the logistic regression equation),

we dichotomized continuous data at the midpoint of the difference in means between patients

with and without SARS-CoV-2 infection. To test for validity, the probability from logistic

regression was computed by solving for probability (P) from the logistic regression equation

(obtained from the antilog of the logistic regression equation yielding P = [1+exp(-Scoeffi-

cients+intercept)]-1); the net positive points for the CORC score were calculated for each of

the remaining 50% of patients in the registry, who were independent of the derivation popula-

tion. Diagnostic accuracy of the probabilityfrom logistic regression and CORC score were

assessed in the validation with receiver operating characteristic curve and diagnostic indexes

from contingency table analysis. Data were analyzed with SPSS1 software with the Complex

Sampling and Testing module.

Results

Data for this analysis were downloaded from the registry on December 3, 2020. The download

included 20,060 complete records collected per protocol from 41 hospital systems representing

116 unique hospitals from 25 states. Eligible records came from patients tested for SARS-CoV-

2 from the first week of February, until the fifth week of October, 2020. After exclusion of 210

records marked by the sites as screen fails (from a later discovered exclusion criterion), 19,850

records were left for analysis. Multiple imputation successfully replaced all missing parametric

values, including body mass index as the most frequently missing value (in 25%), followed by

respiratory rate (1.4%). For age, blood pressure, and pulse oximetry, values were missing in

less than 1% of the samples. Each record was then assigned a random number drawn from 1 to

19,850, and re-sequenced, and the first and second halves were used to derive and test the

probabilityfrom logistic regression, respectively. Table 1 shows the clinical characteristics of

the sample, divided into the derivation and validation groups, and indicates that random sam-

pling produced two comparable groups. Compared with US Census Bureau data from 2019,

the median age of this ED sample is older by approximately 12 years, and has approximately a

13% higher representation of persons identifying as Black (and lower percentage of persons

identifying as White), but a similar distribution of biological sex and Hispanic or Latino eth-

nicity [15]. Table 1 conveys findings that are important to developing accurate pretest proba-

bility criteria using criteria available at the bedside. First, the pooled prevalence of infection

among those tested was 34%, which is relatively high for producing exclusionary criteria.
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Second, the mean turn-around-time for SARS-CoV-2 testing was greater than one day,

although the median time was 0.5 days (interquartile range 0–1.0). Third, approximately 5%

of the sample had none of the 28 recorded symptoms at presentation, but still had clinical

suspicion that led to testing. Fourth, approximately one-quarter of all patients had no chest

Table 1. Clinical features of the derivation and validation samples.

Derivation (n = 9925) Validation (N = 9925)

mean SD mean SD

Age (years) 50 20.6 51 20.4

Number of symptoms at presentation 4.5 1.9 4.6 1.9

Duration of symptoms (days) 5.4 9.7 5.5 10.1

Heart rate (beats/min) 94.7 21.6 94.7 21.3

Respiratory rate (breaths/min) 20.1 5.5 20.0 5.4

Pulse oximetry at triage (%) 96 6.0 96 6.5

Lowest pulse oximetry reading (%) 94 7.3 94 7.6

Temperature (Celsius) 37.1 1.1 37.1 1.2

Systolic blood pressure (mm Hg) 134 25.6 134 25.3

Diastolic blood pressure (mm Hg) 80 16.6 80 16.4

Body mass index (Kg/m^2) 30 10.1 30 9.8

Days between SARS-CoV-2 test order and result 1.4 2.3 1.5 2.4

n % of group n % of group

Age<18 years 425.0 4% 444.0 4%

Female sex 5201 52% 5226 53%

Asian race 289 3% 252 3%

Black race 2630 26% 2686 27%

White race 5301 53% 5180 52%

Hispanic or Latino ethnicity 1748 18% 1729 17%

Homeless 334 3% 325 3%

Obese 2501 25% 2587 26%

Diabetes mellitus 2262 23% 2317 23%

Hyperlipidemia 2782 28% 2808 28%

Hypertension 4157 42% 4229 43%

Active cancer 1214 12% 1217 12%

Prior organ transplantation 167 2% 178 2%

Atrial fibrillation 779 8% 803 8%

Ischemic heart disease 950 10% 996 10%

Heart failure 968 10% 1007 10%

Chronic obstructive pulmonary disease 1027 10% 1019 10%

Asthma 1623 16% 1558 16%

Prior venous thromboembolism 598 6% 583 6%

Current smoker 1792 18% 1770 18%

No symptoms 20 0% 13 0%

SARS-CoV-2 infection 3443 35% 3422 34%

Influenza testing done� 4514 45% 4506 45%

Other viral testing† 3873 39% 3839 39%

Chest radiograph done 7499 76% 7493 75%

Laboratory analysis of blood specimen 7600 77% 7624 77%

�Influenza A, B or both positive = 279/90020 (3% positive rate)
†One or more other viruses detected = 1122/7712 (15% positive rate).

https://doi.org/10.1371/journal.pone.0248438.t001
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radiograph performed and almost one-quarter had no laboratory analysis of a blood specimen.

Additional data of relevance include the fact that 1,915 patients (10%) had visited the ED

within the previous 14 days prior to testing for SARS-CoV-2, but records documented clinical

suspicion for COVID-19 in only 367 (19%) of these visits.

Of 107 candidate variables shown in S1 Table, 72 had P<0.05 by univariate statistical analy-

sis (Chi-Square for bivariate data and unpaired t-test for continuous data), comparing data

from patients with positive SARS-CoV-2 testing versus patients with negative test. These 72

variables were subsequently evaluated by stepwise forward multivariable logistic regression

using the likelihood ratio method. After exclusion of 42 variables that were not significant, the

procedure was repeated with 30 variables. The model selected for the probability from logistic

regression was from step 13 (13 variables) based upon consideration of the need to limit num-

ber of variables for practical use with maintenance of model fitness by keeping the Hosmer-

Lemeshow P value >0.10. These 13 variables were then examined by a single-step logistic

regression to produce Table 2. This model produced a C-statistic (area under the receiver

operating characteristic curve) of 0.80 (0.79–0.81). When the equation solved for probability,

at a cutoff of 0.1 this yielded sensitivity of 97% and specificity of 20% in the derivation popula-

tion. Table 3 shows the simplification of the probability from logistic regression into the 13

component CORC score, which included the dichotomization of age, temperature and the

pulse oximetry reading obtained at the time of triage in the ED. With the exception of the

anosmia/dysgeusia variable, the use of whole digits (-1 or +1, score range -3 to +10) propor-

tionately reflect the sign and rounded magnitude of the beta coefficients and intercept

obtained from repeated logistic regression with age, pulse oximetry and temperature converted

to dichotomous variables with cutoffs at 50 years, 94.5% and 37.5˚C respectively. With 0 or

fewer points considered a test negative CORC score result, a negative CORC score produced

diagnostic sensitivity of 96% and specificity of 21% in the derivation population.

When applied to the other half of the sample (validation group, n = 9925), the probability

from logistic regression and CORC score performed similarly. The probability from logistic

regression had an area under the receiver operating characteristic of 0.80 (95% CI, 0.79 to

Table 2. Logistic regression results of the selected model (the probability from logistic regression).

Coefficient Odds ratio 95% CI

Lower Upper

Black race 0.88 2.40 2.04 2.82

White race -0.42 0.66 0.57 0.76

Hispanic or Latino ethnicity 1.34 3.81 3.28 4.42

Age in years 0.02 1.02 1.02 1.02

Symptom: Loss of sense of taste or smell 1.93 6.89 5.22 9.11

Symptom: Non-productive cough 0.43 1.54 1.39 1.70

Symptom: Fever 0.44 1.55 1.39 1.72

Symptom: Muscle aches 0.48 1.61 1.43 1.81

Exposure to COVID-19: None known -0.45 0.64 0.57 0.71

Exposure to COVID-19: Household contact with known or suspected infection 1.68 5.36 4.42 6.51

Pulse oximetry at triage -0.04 0.96 0.95 0.97

Temperature in Celsius 0.44 1.55 1.46 1.65

Current smoker -0.81 0.45 0.39 0.51

Intercept -14.78 N/A

Model analysis: Hosmer Lemeshow P = 0.526, McFadden’s pseudo R2 = 0.22, C statistic = 0.80.

https://doi.org/10.1371/journal.pone.0248438.t002
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0.81), and when solved for probability (P), if P<0.1, the diagnostic sensitivity was 96.8% (96.1

to 97.3%) and the specificity was 20.1% (19.1 to 21.1%), yielding a posterior probability of

7.8% (6.5 to 9.8%). The accuracy of the probability from logistic regression in the validation

dataset was maintained across the month of diagnosis. For the 8,444 patients evaluated early in

the US pandemic (February to May 2020) the area under the receiver operating characteristic

curve for the probability from logistic regression was 0.80 (0.79 to 0.81), compared with 0.81

(0.79 to 0.84) for 1,481 patients evaluated from June 2020 onward. The probability from logis-

tic regression area under the receiver operating characteristic curve was decreased in patients

with zero symptoms (0.73, 0.69 to 0.77).

In the validation set, the CORC score negative (0 or fewer points from Table 3) produced

sensitivity of 95.6% (94.8 to 96.3%), specificity of 20.0% (19.0 to 21.0%), likelihood ratio nega-

tive of 0.22 (0.19 to 0.26) and a posterior probability of 10.4% (8.9 to 12.1%). The probability

of infection increases with the number of positive points from the CORC score. This stepwise,

positive concordance is shown in Fig 1, which plots the posterior probability of positive

SARS-CoV-2 testing as a function of the number of points from the CORC score from the vali-

dation population. The probability of SARs-CoV-2 infection is>75% in a patient with +5 or

more points from the CORC score.

Table 4 shows the standard diagnostic contingency table (also referred to as a confusion

matrix) using a CORC score >0 as the definition of a positive test result with associated calcu-

lations of precision, recall and F1 index. Fig 2 shows the plots of the precision-recall curve and

receiver operating characteristic curve with their AUC data. The CORC score had a slightly

lower area under the curve (0.75, 0.74–0.76) than the probability from logistic regression (0.80,

0.79–0.81).

Given the concern about low diagnostic sensitivity for molecular testing on swab samples, a

relevant question is how the CORC score performed among patients with an initially negative

swab test who had subsequent evidence of SARS-CoV-2 infection within 30 days. From the

entire sample (both derivation and validation), the initial swab that qualified the patient for

enrollment was negative in 13,159 patients. Of these, 174 (1.1%) subsequently had evidence of

SARs-CoV-2 from either a repeated nasopharyngeal swab or positive antibody testing done

within 30 days. Among these 174 patients who had a possibly false negative molecular test

done on a swab sample, the CORC score was >0 in 87%.

Table 3. The COVID-19 rule out criteria (CORC score).

Component Points

Black race +1

White race -1

Hispanic or Latino ethnicity +1

Age >50 years +1

Symptom: Loss of sense of taste or smell +1

Symptom: Non-productive cough +1

Symptom: Fever +1

Symptom: Muscle aches +1

Exposure to COVID-19: None known -1

Exposure to COVID-19: Household contact with known or suspected infection +1

Pulse oximetry at triage <95% +1

Temperature in Celsius >37.5 +1

Current smoker -1

https://doi.org/10.1371/journal.pone.0248438.t003
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Discussion

This work addresses the urgent need for criteria to rapidly, easily, and accurately estimate the

probability of SARs-CoV-2 infection. Using registry data from the RECOVER Network, which

was specifically created to address this knowledge gap, we found that 13 variables—11 of

which were obtained from verbal interview, together with one data point each from a ther-

mometer and a pulse oximeter—can accurately predict the probability of SARS-CoV-2 infec-

tion if entered into a logistic regression equation and solved for probability (the probability

Fig 1. The CORC score by number of points. The probability of SARS-CoV-2 infection increased according to

number of points from the CORC score.

https://doi.org/10.1371/journal.pone.0248438.g001

Table 4. Contingency table (confusion matrix) for the CORC score.

CORC>0 CORC< = 0

SARS-CoV-2+ 3271 151

SARS-CoV-2- 5201 1302

Precision = 3271/(3272+5201) = 0.39.

Recall = 3271/(3271+151) = 0.96.

F1 = (0.39�0.96)/(0.39+0.96) = 0.55.

Abbreviations: CORC-COVID-19 Rule-Out Criteria.

https://doi.org/10.1371/journal.pone.0248438.t004
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Fig 2. Diagnostic performance of the CORC score. The plot in the top panel shows the precision-recall curve and the

plot in the lower panel shows the receiver operating characteristic curve for the COVID-19 Rule Out Criteria (CORC)

score.

https://doi.org/10.1371/journal.pone.0248438.g002
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from logistic regression) [9]. A simpler version comprising 13 binary variables, scored with

negative or positive point values (the CORC score, shown in Table 3) provides similar accu-

racy. To our knowledge, this is the first prediction rule (or score) for SARS-CoV-2 infection

that does not require laboratory or radiographic data which makes this model very useful in

high throughput settings, such as triage areas of emergency departments and also in non hos-

pital settings such as homeless encampments and street medicine.

The probability from logistic regression was derived from a large patient pool enrolled

from 27 states with demographics reflective of the overall US population. The overall utility

and durability of the probability from logistic regression is suggested by the area under the

receiver operating characteristic curve of 0.80 in both the derivation and validation samples,

and that this level of accuracy was retained in patients tested either earlier or later in the first

year of the US SARS-CoV-2 pandemic. A negative CORC score (0 or fewer points) had 95.6%

sensitivity and 20.0% specificity in the validation sample, providing a likelihood ratio negative

of 0.22 (95% CI 0.19 to 0.26). Moreover, the CORC score was positive (>0 points) in the 87%

of patients with an initially negative and subsequently positive molecular test for SARS-CoV-2

done on a swab sample from the nasopharynx. For the goal of predicting high risk of infection,

patients in the validation sample with a +5 or more points from the CORC score had a >75%

probability of a positive test. Thus, assuming the expected prevalence of SARS-CoV-2 infection

is below 10%, the estimated likelihood ratio negative of 0.22, a CORC score of zero or less

would allow a very low posterior probability (e.g.,<2.0%) and thus may obviate the need for

molecular testing or isolation in a negative pressure room in the ED setting. On the other

hand, a CORC score�5 should be considered predictive of high risk, suggesting the need for

molecular testing, and possibly repeated testing if the first test is negative [16].

In terms of methodological strength, the large, diverse, and representative patient sample of

patients tested for SARS-CoV-2 has a low risk of sampling bias, which has hampered previous

prediction rules for COVID-19 [17]. The practical benefit of the CORC criteria is the lack of

requirement for radiological or laboratory data, which were not ordered in the usual care of

over a quarter of patients in this sample and are not available in many settings where risk

assessment for probability of SARS-CoV-2 infection is critical to decision-making. These find-

ings suggest that the CORC score, if validated in prospective work, can assist with decisions

about need for formal diagnostic testing and isolation procedures for persons passing through

high throughput settings including the triage area of some emergency departments and medi-

cal clinics, and at the point of entry for homeless shelters, industry, correctional facilities, and

extended care facilities. In the home setting thermometers are common and in some protocols

pulse oximetry has been used to monitor outpatients with known COVID-19 [18]. Thus, in

concept, the CORC score could be an adjunctive measure to assess the probability of SARS-

CoV-2 among household contacts of persons known to be infected. After prospective valida-

tion, the CORC score may also help reduce low-value repeated molecular testing after initial

infection, that could produce false positive results.

The data for the probability from logistic regression and CORC score were obtained retro-

spectively using rigorous methods to ensure high value variables, and unique, relevant circum-

stantial data. In contrast to many recent reports using clinical informatics, the level of detail

for the data from this study required manual evaluation of medical records by research person-

nel. For example, manual review was required to ensure that the symptoms recorded repre-

sented those that the patient manifested on the first contact with the healthcare system while

infected with SARs-CoV-2—which was the case for 1,915, or 10% of the cohort. The probabil-

ity from logistic regression was a required step to create the simpler CORC score. The more

formal probability from logistic regression is calculated by exponentiating the logistic regres-

sion equation and solving for probability, a task easily performed using an online or internet-
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based calculator. However, recognizing prior literature on the real-world behavior of physi-

cians, we believe a simpler scoring system comprising positive or negative whole single digits

will enhance dissemination and adoption [19,20].

The variables retained by the selection process for both the probability from logistic regres-

sion and score warrant discussion. First, the large sample and high prevalence would have

allowed the stepwise forward logistic regression to retain many more variables, but we termi-

nated the selection at 13 variables for several reasons. The first reason centered on the prag-

matic consideration of the time required in busy clinical practice to use the decision aid. The

second reason is concern about an overfit model, which is more likely to occur with an exces-

sively complex derivation, regardless of the learning method [21]. Previous simulation studies

suggest that the variability of the area under the receiver operating characteristic curve with 13

variables, and a sample size of 10,000 including >30% prevalence of outcomes is less than 5%

with repeated sampling [22]. Third, at the 14th step, the model began to introduce variables

that might be more vulnerable to interobserver variability, including “active cancer” at step 14,

a variable that likely requires more inference than the retained 13 variables. A potentially

unanticipated finding is that smoking history was retained as a negative predictor of infection

—a finding that has been reported by others who have suggested that nicotine may reduce

expression of epithelial ACE2 receptor, and thus reduce SARS-CoV-2 infectivity [23–25].

Compared with persons identifying as White, Black race and Latino/Hispanic ethnicity sig-

nificantly increased the probability of infection. Race-specific patterns in symptom manifesta-

tion that might alter clinical suspicion and testing threshold do not appear to explain the

differences in positive rate [26]. To our knowledge, no genetic or biologic reasons explain why

Black and Hispanic/Latino patients are more likely to have a SARS-CoV-2 infection. Instead,

the statistical weight on these variables may result from them acting as proxies for other socie-

tal factors. The association of race with positive testing may correlate with a higher likelihood

of working service-related jobs which are unable to be done from home (thereby increasing

exposure to SARS-CoV-2). In one study of a cohort of SARS-CoV-2 infected patients in Loui-

siana, 77% of those requiring hospitalization were Black; only 30% of the total area population

is Black [27]. However, when adjusted for socioeconomic status and pre-existing clinical

comorbidities, there was no racial difference identified in mortality [27]. Ongoing work will

report the impact of insurance status and geographic location (by four digit zip code) on

SARS-CoV-2 infection rate and severity.

The retrospective collection of data introduces the primary limitation of this work inasmuch

as the probability from logistic regression and CORC score performance, including metrics

of inter-rater reliability and operational characteristics, have not been used yet in real practice.

For example, in terms of generalizability for high throughput screening, it remains unknown

whether the temperature component, measured by an infrared thermometer, and the oxygen

saturation, measured by a portable pulse oximeter, would provide similar diagnostic accuracy.

Symptoms not recorded were assumed to be absent, which could affect score precision and

accuracy. Another limitation is the relative lack of data from most recent cases. The most recent

patient was evaluated in October and most cases came from early spring of 2020. The genotype

of the virus, as well as the phenotype of infected patients, may have changed with time, and

the effect on accuracy and imprecision are unknown. Additionally, it remains possible that

machine-based learning methods may offer a superior role, although as a preliminary step, sev-

eral of the authors of this work, directly compared three derivation techniques (logistic regres-

sion, random forest and gradient boosting) to create prediction models for SARS-CoV-2 using

ED-based data. The logistic regression model had an AUC of 0.89 (95% confidence interval

[CI] = 0.84 to 0.94); the random forest method had AUC of 0.86 (95% CI = 0.79 to 0.92) and

gradient boosting had an AUC of 0.85 (95% CI = 0.79 to 0.91) [28]. It is important to note that
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all prior prediction models included use of laboratory and radiographic values. To consider the

possible benefit of machine learning, the authors reviewed the diagnostic accuracy of criteria of

20 reports to predict SARS-CoV-2 infection, including both logistic regression and machine

learning techniques [28–30]. This informal scoping review revealed that the diagnostic accuracy

of machine learning was not superior to logistic regression-based models, and therefore sup-

ported the pre-planned classical approach to model development [28].

In conclusion, we present novel criteria requiring only information that can be obtained

from the patient interview, a thermometer, and a pulse oximeter to predict the probability of

SARS-CoV-2 infection. A score of zero from the simplified COVID-19 rule-out criteria (the

CORC score) predicts a low probability of infection and a score of 5 or more predicts a high

probability of infection. If prospectively validated, we believe the CORC score will help expe-

dite decision-making in high throughput settings.
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